Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
São Paulo; s.n; s.n; 2021. 116 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1396053

ABSTRACT

The enzyme L-asparaginase (ASNase) is broadly applied as a drug to treat acute lymphoblastic leukemia, as well as in the food industry to avoid acrylamide formation in baked and fried food. In the present work, ASNase was covalently attached to polyethylene glycol (PEG) of different molecular weights (ASNase-PEG-5, ASNase-PEG-10, ASNase-PEG-20, and ASNase-PEG-40) at the N-terminal portion (monoPEGylation). Native and PEGylated forms were analyzed regarding thermodynamics and thermostability based on enzyme activity measurements. ASNase (native and PEGylated) presented maximum activity at 40 °C and denaturation followed a first-order kinetics. Based on these results, the activation energy for denaturation (E*d) was estimated and higher values were observed for PEGylated forms compared to the native ASNase, highlighting the ASNase-PEG10 with a 4.24-fold increase (48.85 kJ.mol-1) in comparison to the native form (11.52 kJ.mol-1). The enzymes were evaluated by residual activity over time (21 days) under different storage temperatures (4 and 37 °C) and the PEGylated conjugates remained stable after the 21 days. Thermodynamic parameters like enthalpy (ΔH‡), entropy (ΔS‡) and Gibbs free energy (ΔG‡) of ASNase (native and PEGylated) irreversible denaturation were also investigated. Higher - and positive - values of Gibbs free energy were found for the PEGylated conjugates (61.21 a 63.45 kJ.mol-1), indicating that the process of denaturation was not spontaneous. Enthalpy also was higher for PEGylated conjugates (18.84 a 46.08 kJ.mol-1), demonstrating the protective role of PEGylation. As for entropy, the negative values were more elevated for native ASNase (-0.149 J/mol.K), pointing out that the denaturation process enhanced the randomness and aggregation of the system, which was observed by circular dichroism. Thus, PEGylation proved its potential to increase ASNase thermostability


A enzima L-asparaginase (ASNase) é amplamente usada como medicamento para tratamento da leucemia linfoblástica aguda, bem como na indústria de alimentos para evitar a formação de acrilamida em alimentos cozidos e fritos. No presente trabalho, ASNase foi covalentemente ligada ao polímero poli(etilenoglicol) (PEG) de diferentes massas moleculares (ASNase-PEG-5, ASNase-PEG- 10, ASNase-PEG-20, and ASNase-PEG-40) na região N-terminal (monoPEGuilação) a fim de se estudar os efeitos da PEGuilação na termoestabilidade da enzima. As formas PEGuiladas e nativa foram analisadas em relação à termodinâmica e termoestabilidade a partir de atividade enzimática. A ASNase (nativa e PEGuilada) apresentou atividade máxima a 40 °C e a desnaturação ocorreu por cinética de primeira ordem. Com base nesses resultados, a energia de ativação para desnaturação (E*d) foi estimada e maiores valores foram observados para as formas PEGuiladas em comparação à enzima nativa, destacando-se a ASNase-PEG10 com aumento de 4.24 vezes (48.85 kJ.mol-1) em comparação com a forma nativa in (11.52 kJ.mol mol-1). As enzimas foram avaliadas por sua atividade residual ao longo do tempo em diferentes temperaturas de armazenamento (4 e 37 °C) e os conjugados PEGuilados mostraram-se mais estáveis após os 21 dias de ensaio. Parâmetros termodinâmicos como entalpia (ΔH‡) de desnaturação irreversível foram analisados. Valores maiores - e ), entropia (ΔS‡) de desnaturação irreversível foram analisados. Valores maiores - e ) e energia livre de Gibbs (ΔG‡) de desnaturação irreversível foram analisados. Valores maiores - e positivos - da energia livre de Gibbs foram encontrados para os conjugados PEGuilados (61.21 a 63.45 kJ.mol-1), indicando que o processo de desnaturação não ocorreu de forma espontânea. A entalpia também foi maior para os conjugados PEGuilados (18.84 a 46.08 kJ.mol-1), demonstrando o efeito protetivo da PEGuilação. Já para a entropia, os valores negativos foram mais elevados para a ASNase nativa (-0.149 J/mol.K), apontando que o processo de desnaturação aumentou a aleatoriedade e agregação do sistema, o que foi confirmado pelo dicroísmo circular. Dessa forma, a PEGuilação revelou o seu potencial de aumento de termoestabilidade para a ASNase


Subject(s)
Asparaginase/analysis , Food Industry , Acrylamide , Enzymes/pharmacology , Food
2.
São Paulo; s.n; s.n; 2021. 84 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1380519

ABSTRACT

A enzima L-asparaginase de Escherichia coli (ASNase) é um biofármaco indicado para o tratamento de leucemia linfoblástica aguda, mas que pode causar reações de hipersensibilidade nos pacientes tratados. Na tentativa de amenizar esse efeito, foi desenvolvida a PEG-ASNase (enzima conjugada com polietilenoglicol) que apresenta a vantagem de ser menos imunogênica e ter maior meia-vida biológica. Mais recentemente, novas abordagens têm sido desenvolvidas visando aprimorar os processos de PEGuilação por meio de reações sítio dirigidas, por exemplo N-terminal, a fim de promover maior similaridade lote a lote e controle das características farmacocinéticas e farmacodinâmicas do biofármaco. Porém, existe ainda uma limitação associada à hidrólise do PEG reativo, desta forma surge a necessidade de procurar solventes alternativos para a PEGuilação que permitam manter a estabilidade das proteínas, aumentar o rendimento de PEGuilação e a estabilidade do PEG reativo. Nesse trabalho, líquidos iônicos foram investigados como solventes alternativos para a peguilação N-terminal de PEG-ASNase. Para tal, a estabilidade de ASNase em Lis foi investigada em LIs da família metil-imidazol, analisando a influência do aumento da cadeia alquílica e de diferentes ânions. A estabilidade da ASNase é favorecida quando em contato com Lis relativamente hidrofóbicos ([C2mim]Cl, [C4mim]Cl e [C6mim]Cl), mas sua a atividade é prejudicada quando o LI é muito polar, como o [C4mim][(CH3)2PO4] ou anfifílico como o [C12mim]Cl. Apesar de seu efeito desnaturante, o [C4mim][(CH3)2PO4] resultou no maior rendimento da reação de PEGuilação da ASNase (56%) quando empregado a 75% e a reação realizada em 10 min. O [C4mim]Cl resultou em rendimento semelhante ao tampão fosfato (~ 49%), mas ambos os LIs reduziram a poliPEGuilação. Portanto, os Lis [C4mim]Cl e [C4mim][(CH3)2PO4] fornecem uma alternativa viável à reação de PEGuilação pela redução na formação de espécies poliPEGuiladas, o que facilitaria os processos de purificação e permitiria maior controle lote a lote da reação, bem como pelo aumento do rendimento da reação no caso do [C4mim][(CH3)2PO4]


Escherichia coli L-asparaginase enzyme (ASNase) is a biopharmaceutical indicated for the treatment of acute lymphoblastic leukemia, but may cause hypersensitivity in the patients used. In an attempt to alleviate this effect, PEG-ASNase (polyethylene glycol conjugated enzyme) was developed, which has the advantage of being less immunogenic and having a longer biological half-life. More recently, new approaches have been applied to improve PEGylation processes through targeted sites, for example N-terminal, in order to promote greater similarity to the batch and control of the pharmacokinetic and pharmacodynamic characteristics of the biopharmaceutical. However, there is still a limitation associated with reactive PEG hydrolysis, thus increasing the need to look for alternative PEGylation solvents to maintain protein stability, increase PEGylation yield and use reactive PEG. In this work, ions were investigated as alternative solvents for the N-terminal PEG-ASNase. For example, a stability of ASNase in ILs was investigated in imidazole ILs by analyzing the influence of increased alkyl chain and different anions. ASNase stability is enhanced when in contact with relatively hydrophobic ILs ([C2min]Cl, [C4min]Cl and [C6min]Cl), but its activity is impaired when very polar ILs such as [C4min][(CH3)2PO4] or amphiphilic as [C12mim]Cl. Despite its denaturing effect, [C4min][(CH3)2PO4] resulted in higher yield of ASNase PEGylation reaction (56%) when employed at 75% and reaction performed in 10 min. [C4min]Cl yielded similar phosphate buffer yield (~ 49%), but both ILs reduced polyPEGylation. Therefore, [C4min]Cl and [C4min][(CH3)2PO4] Ils may use a viable alternative to the PEGylation reaction and reduce the formation of polyPEGylated species, or that facilitate purification processes and allow for greater batch use of the solution, as well as increased reaction yield in the case of [C4min][(CH3)2PO4]


Subject(s)
Ionic Liquids , Asparaginase/analysis , Escherichia coli/classification , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Stability
3.
São Paulo; s.n; s.n; 2021. 74 p. tab, graf.
Thesis in Portuguese | LILACS | ID: biblio-1378864

ABSTRACT

As infecções relacionadas à assistência à saúde (IRAS) podem ser causadas por bactérias, vírus e fungos, sendo de extrema importância para o sistema de tratamento e pacientes. Com o alarmante avanço no surgimento de bactérias resistentes, tem havido uma preocupação crescente com as IRAS de origem bacteriana. Nesse sentido, várias pesquisas buscam alternativas para os fármacos antimicrobianos convencionais, sendo que os peptídeos antimicrobianos (AMPs), como a lunatina-1, aparecem como moléculas promissoras. No entanto, os AMPs geralmente apresentam rápida degradação proteolítica no trato gastrointestinal e meia-vida curta na corrente sanguínea, principais fatores limitantes para sua aplicação no tratamento de IRAS. Entre as estratégias empregadas para superar esses inconvenientes, a PEGuilação apresenta-se como alternativa eficaz que aumenta o tempo de circulação in vivo dos AMPs, resultando na melhora farmacocinética e, em alguns casos, também farmacodinâmica. A PEGuilação consiste na ligação covalente de cadeias de polietileno glicol (PEG) ao peptídeo, que pode ser efetuada por meio de uma reação aleatória ou sítio-específica. Neste trabalho, desenvolveu-se uma PEGuilação sítio-específica no N-terminal da lunatina-1 empregando-se mPEG-NHS de 2 kDa em tampão fosfato 100 mM, visando o aumento da solibilidade deste peptídeo, bem como para avaliar sua ação antimicrobiana. Com relação à reação de PEGuilação, avaliou-se a influência da razão molar PEG:peptídeo (10:1 ou 15:1) a pH 8,5. Foi obtido um rendimento de PEGuilação de 92%, através da análise por RP-HPLC quantitativo. Quanto à purificação da lunatina-1 PEGuilada, foi empregada a técnica semi-preparativa de RP-HPLC utilizando a coluna C18. A caracterização da lunatina-1 PEGuilada, incluindo determinação do grau de PEGuilação, foi realizada por MALDI-TOF Autoflex Speed (Bruker), mostrando que a molécula foi monoPEGuilada na região N-terminal. A atividade antimicrobiana de lunatina-1 livre e bioconjugada frente a diferentes cepas bacterianas, sendo duas Gram-negativas (ATCC 25922 de Escherichia coli e ATCC 9027 de Pseudomonas aeruginosa) e uma Gram-positiva (CECT 239 de Staphylococcus aureus), foi estudada por determinação da concentração inibitória mínima (CIM) em microplaca, sendo que foram obtidos valores de CIM de 86 e 140 µM para o peptídeo liver e PEGuilado, respetivamente. O potencial hemolítico também foi estudado, sendo que a forma PEGuilada mostrou significativa redução da atividade hemolítica em comparação à forma livre. Em suma, a PEGuilação da lunatina-1, aumenta a sua solubilidade e reduz a atividade hemolítica. Porém, para viabilizar esta estratégia a PEGuilação deve ser reversível, pois a conjugação ao polímero reduz atividade antimicrobiana


Health care-related infections (HAIs) caused by bacteria, viruses and fungi are extremely important for patients and health systems. With the alarming advance in the emergence of resistant bacteria, a growing concern with HAIs of bacterial origin is observed. In this sense, several studies investigate alternatives to conventional antimicrobial drugs and antimicrobial peptides (AMPs), such as lunatin-1, appear as promising molecules. However, AMPs generally show rapid proteolytic degradation in the gastrointestinal tract and short half-life in the bloodstream, the main limiting factors for their therapeutic application to treat HAIs. Among the strategies used to overcome these drawbacks, PEGylation presents itself as an effective alternative that increases the in vivo circulation time of AMPs, resulting in improved pharmacokinetics and, in some cases, also pharmacodynamics. PEGylation consists on the covalent attachment of polyethylene glycol (PEG) chains to the peptide, which can be carried out by means of a random or site-specific reaction. In this work, a site-specific PEGylation was developed at the N-terminus of lunatin-1 using 2 kDa mPEG-NHS to increase the solubility of this peptide, as well as to evaluate its antimicrobial activity. Regarding the PEGylation reaction, the influence of the molar ratio PEG: peptide (10: 1 or 15: 1) at pH 8.5 was evaluated and a PEGylation yield of 92% was obtained, based on quantitative RP-HPLC analysis. As for the purification of PEGylated lunatin-1, semi-preparative RP-HPLC was used. The characterization of PEGylated lunatin-1, including determination of the degree of PEGylation, was performed by MALDI-TOF Autoflex Speed (Bruker), showing that the peptide was monoPEGylated in the N-terminal region. The antimicrobial activity of free and bioconjugated lunatin-1 against different bacterial strains, two Gram-negative (ATCC 25922 from Escherichia coli and ATCC 9027 from Pseudomonas aeruginosa), and one Gram positive (CECT 239 from Staphylococcus aureus), was studied by determining the minimum inhibitory concentration (MIC) in a microplate, resulting in MIC values of 86 and 140 µM for the free and PEGylated peptide, respectively. The hemolytic potential was also studied and the PEGylated form showed a significant reduction in hemolytic activity compared to the free form. In short, the PEGylation of lunatin-1 increases its solubility and reduces hemolytic activity. However, to make this strategy feasible, PEGylation must be reversible, since the conjugation to the polymer reduces antimicrobial activity


Subject(s)
Pharmacokinetics , Pharmaceutical Preparations/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Pharmacologic Actions , Infections/complications , Chromatography, High Pressure Liquid , Health Strategies , Delivery of Health Care/classification , Escherichia coli
4.
Rev. colomb. ciencias quim. farm ; 49(3): 602-613, Sep.-Dec. 2020. graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1156306

ABSTRACT

Resumo A PEGuilação, reação química de conjugação com a molécula de polietilenoglicol (PEG) ou polietilenoglicol metil éter (mPEG), tem sido amplamente aplicada pelas indústrias farmacêuticas como estratégia de melhoria das propriedades farmaco-cinéticas de compostos bioativos. O PEG é um polímero que possui um esqueleto de poliéter quimicamente inerte e que apresenta grupos hidroxilas (-OH) em suas extremidades. Assim, o PEG para tornar-se apto como reagente de conjugação deve ser ativado com um grupo funcional que seja reativo. Nesse sentido, a bromoaceti-lação apresenta-se como uma alternativa para a funcionalização do PEG. Portanto, nesse trabalho objetivamos descrever em detalhes os procedimentos e o mecanismo de reação envolvida na funcionalização do mPEG, através da reação de bromoacetilação. Além do mais, estudamos a aplicação do MALDI-ToF para a caracterização do produto ativado. Após a bromoacetilação, por um procedimento adaptado, obteve-se o bromoacetil-mPEG-éster, com rendimento bruto de 56,78%. Análises posteriores, por espectrometria de massas por MALDI-ToF, possibilitaram identificar e caracterizar o produto bromoacetilado. Entre as condições de reação, o controle de temperatura (-10 °C a 0 °C) mostrou-se eficaz favorecendo a adição nucleofílica essencial à bromoacetilação. Assim, concluímos que o controle da baixa temperatura reacional é um fator chave para o favorecimento da adição nucleofílica à carbonila e, portanto, essencial na obtenção do mPEG funcionalizado via bromoacetilação. Estudos posteriores serão necessários, no entanto, para confirmar se o mPEG esterificado, nessas condições, poderá ser utilizado na conjugação com moléculas de natureza proteica ou peptídica, por meio de substituição nucleofílica bimolecular.


SUMMARY PEGylation, a chemical reaction of conjugation with the polyethylene glycol molecule (PEG), has been widely applied by the pharmaceutical industries as a strategy to improve the pharmacokinetic properties of bioactive compounds. PEG is a polymer that has a chemically inert polyether backbone and hydroxyl groups (-OH) at its ends. Thus, PEG to become fit as a reagent for conjugation must be activated with a functional group that is reactive. In this sense, bromoacetylation presents itself as an alternative for the functionalization of PEG. Therefore, in this study we aim to describe in detail the procedures and reaction mechanism involved in the functionalization of mPEG through the bromoacetylation reaction. In addition, we used the spectrometric technique, by MALDI-ToF, for the characterization of the activated product. After applying an adapted bromoacetylation procedure, bromoacetyl-mPEG-ester was obtained with a yield of 56.78%. Subsequent analyzes of MALDI-ToF mass spectrometry were able to correctly identify and characterize the bromoacety-lated product. Among the reaction conditions, temperature control (from -10 °C to 0 °C) was effective in favoring the essential nucleophilic addition to bromoacetylation. Thus, we conclude that the control of the low reaction temperature is a key factor in favoring the nucleophilic addition to carbonyl and, therefore, obtaining a favorable conversion to functionalized PEG via bromoacetylation. Further studies, however, will be necessary to confirm whether PEG esterified with these conditions can be used in conjunction with molecules of a protein or peptide nature by means of bimolecular nucleophilic substitution.


RESUMEN La PEGilación, una reacción química de conjugación con la molécula de polietilenglicol (PEG), ha sido ampliamente aplicada por las industrias farmacéuticas como una estrategia para mejorar las propiedades farmacocinéticas de los compuestos bioactivos. El PEG es un polímero formado por un esqueleto de poliéter químicamente inerte con grupos hidroxilo (-OH) en sus extremos. Por lo tanto, para usar el PEG como reactivo de conjugación debe activarse con un grupo funcional que sea reactivo. En este sentido, la bromoacetilación es una alternativa para la funcionalización de PEG. De esta manera, en este trabajo nuestro objetivo es describir en detalle los procedimientos y el mecanismo de reacción involucrados en la funcionalización de PEG a través de la reacción de bromoacetilación. Además, estudiamos la aplicación de MALDI-ToF para la caracterización del producto activado. Después de aplicar un procedimiento de bromoacetilación adaptado, se obtuvo bromoacetil-mPEG-éster con un rendimiento bruto de 56,78%. Los análisis posteriores de espectrometría de masas por MALDI-ToF pudieron identificar y caracterizar correctamente el producto bromoacetilado. Entre las condiciones de reacción, el control de la temperatura (desde -10 °C hasta 0 °C) fue eficaz para favorecer la adición nucleofílica esencial a la bromoacetilación. Así, concluimos que el control de la baja temperatura de reacción es un factor clave para favorecer la adición nucleofílica al carbonilo y, por lo tanto, esencial para obtener el mPEG funcionalizado mediante la bromoacetilación. Sin embargo, serán necesarios más estudios para confirmar si el mPEG esterificado en estas condiciones puede usarse junto con moléculas de naturaleza proteica o peptídica por medio de la sustitución nucleófila bimolecular.

5.
São Paulo; s.n; s.n; 2019. 299 p. tab, graf.
Thesis in English | LILACS | ID: biblio-1023795

ABSTRACT

Protein PEGylation is the covalent bonding of polyethylene glycol (PEG) polymers to amino acid residues of the protein and it is one of the most promising techniques for improving the therapeutic effect of biopharmaceuticals and long-term stability of protein-based biosensors. This chemical modification brings advantages to biopharmaceuticals, such as an increased half-life, enhanced stability, and reduced immunogenicity. Moreover, in the analytical field, PEGylation improves the multiple properties of protein-based biosensors including biocompatibility, thermal and long-term stability, and solubility in organic solvents. However, the use of PEGylated conjugates in the analytical and therapeutic fields has not been widely explored. The limited industrial application of PEGylated bioconjugates can be attributed to the fact that the reaction and separation steps are currently a challenge. The correct selection of the PEGylation reaction design and the purification process are important challenges in the field of bioconjugation. In this sense, the design and optimization of site-specific PEGylation reactions and application of aqueous biphasic systems (ABS) as purification platforms for PEGylated conjugates are the two main objectives of this thesis. Regarding the purification step, the efficient fractionation (i) of the PEGylated conjugates from the native protein and (ii) of the PEGylated conjugates based on their degree of PEGylation was studied. Centrifugal partition chromatography (CPC) was applied as a continuous regime platform based on ABS technology to efficiently purify the PEGylated proteins. The two proteins under study are L-asparaginase, an important biopharmaceutical applied in the treatment of acute lymphoblastic leukemia and cytochrome c, a promising biosensor. The current work developed in this thesis demonstrates the great potential of ABS in the fractionation of PEGylated proteins, under batch and continuous regime. In addition, in situ recovery of the PEGylated products through one-pot bioconjugation and ABS purification was successfully demonstrated for both enzymes studied. Although further research on scale-up is still required, the results presented show the relevance of ABS platforms for the development of separation processes of PEGylated proteins


A PEGuilação de proteínas é a ligação covalente de polímeros de polietilenoglicol (PEG) a resíduos de aminoácidos da proteína e é uma das técnicas mais promissoras para melhorar o efeito terapêutico dos biofármacos e a estabilidade a longo prazo de biossensores proteícos. Esta modificação química traz vantagens aos produtos biofarmacêuticos, como um aumento da meia-vida, maior estabilidade e imunogenicidade reduzida. Além disso, no campo analítico, a PEGuilação melhora as múltiplas propriedades dos biossensores baseados em proteínas, incluindo biocompatibilidade, estabilidade térmica e a longo prazo, e solubilidade em solventes orgânicos. No entanto, o uso de conjugados PEGuilados em campos analíticos e terapêuticos não tem sido amplamente explorado. A aplicação industrial limitada dos bioconjugados PEGuilados pode ser atribuída ao facto de as etapas de reacção e separação serem atualmente um desafio. A seleção correcta do design da reacção de PEGuilação e do processo de purificação são importantes desafios no campo da bioconjugação. Neste sentido, a concepção e otimização de reações de PEGuilação sítio-específicas e aplicação de sistemas aquosos bifásicos (ABS) como plataformas de purificação de conjugados PEGuilados são os dois principais objetivos desta tese. No que concerne à etapa de purificação foi estudado o eficiente fracionamento (i) dos conjugados PEGuilados, da proteína nativa e (ii) dos conjugados PEGuilados baseados no seu grau de PEGuilação. A cromatografia por partição centrífuga (CPC) foi aplicada como uma plataforma de regime contínuo baseada na tecnologia de ABS para purificar eficientemente as proteínas PEGuiladas. As duas proteínas em estudo são a L-asparaginase, importante biofármaco aplicado no tratamento da leucemia linfoblástica aguda e o citocromo c, um potencial biossensor. A partir dos trabalhos desenvolvidos, é possível confirmar o grande potencial dos ABS no fracionamento de proteínas PEGuiladas, em regime contínuo e descontínuo. Além disso, a recuperação in situ dos produtos PEGuilados através da integração em uma única etapa de bioconjugação e purificação por ABS foi comprovada com sucesso para ambas as enzimas estudadas. Embora ainda sejam necessários estudos adicionais sobre a viabilidade destes sistemas em larga escala, os resultados aqui apresentados demonstram a relevância dos ABS para o desenvolvimento de processos de separação de proteínas PEGuiladas


Subject(s)
Polyethylene Glycols/adverse effects , Proteins/analysis , Biological Products/therapeutic use , Proteins/isolation & purification , Cytochromes c
SELECTION OF CITATIONS
SEARCH DETAIL